
Far-Field Image-Based Traversability Mapping for A Priori Unknown
Natural Environments

Ethan Fahnestock1, Erick Fuentes1, Samuel Prentice1, Vasileios Vasilopoulos2,
Philip R Osteen3, Thomas Howard4, Nicholas Roy1

Abstract—While navigating unknown environments, robots
rely primarily on proximate features for guidance in decision
making, such as depth information from lidar or stereo to
build a costmap, or local semantic information from images.
The limited range over which these features can be used may
result in poor robot behavior when assumptions about the cost
of the map beyond the range of proximate features misguide
the robot. Integrating “far-field” image features that originate
beyond these proximate features into the mapping pipeline has
the promise of enabling more intelligent and aware navigation
through unknown terrain. To navigate with far-field features,
key challenges must be overcome. As far-field features are
typically too distant to localize precisely, they are difficult to
place in a map. Additionally, the large distance between the
robot and these features makes connecting these features to their
navigation implications more challenging. We propose FITAM, an
approach that learns to use far-field features to predict costs to
guide navigation through unknown environments from previous
experience in a self-supervised manner. Unlike previous work, our
approach does not rely on flat ground plane assumptions or range
sensors to localize observations. We demonstrate the benefits of
our approach through simulated trials and real-world deployment
on a Clearpath Robotics Warthog navigating through a forest
environment. Code is available at github.com/efahnestock/fitam.

I. INTRODUCTION

When faced with the challenge of navigating an unmapped
environment, robots traditionally rely on the guidance of a
global planner to reach a goal location. Without a prior map,
global planners must make decisions using the robot’s own
accumulated sensor data. Ranging sensors like lidar or depth
cameras provide highly localized information to the robot
about its surroundings and returns from these sensors quickly
become sparse far from the robot. The sparsity of long-range
sensor data limits the robot’s ability to estimate the cost (time,
energy, risk, etc.) beyond a distance we refer to as the “costmap
horizon”. Beyond the costmap horizon, the global planner must
weigh the cost of traveling through unknown space against the
cost of traveling through previously observed space. Global
motion planners traditionally assign a fixed cost to unknown
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Fig. 1. A: A robot is tasked with navigating to a goal far off to
the right. B: Traditional mapping architectures direct the robot (blue
rectangle) down the orange path to its goal (red circle), as its range
sensors cannot build a map with a costmap horizon (white circle)
that contains a more efficient path. C: However, the robot’s camera
image reveals a clearing, offering the possibility of terrain on which
the robot can reach its objective faster. D: Our approach FITAM
learns to use distant visual features for mapping. With FITAM, the
robot incorporates the low cost predictions (cyan) of the road into
its costmap and plans the purple path that leverages the clearing to
reach its goal in a faster manner.

space [1]. When this constant cost differs significantly from
the true cost of moving through the unknown region, global
navigation can mislead the robot into taking sub-optimal paths.

If a satellite image or other useful navigation prior is
available, it can be used to inform the global planner beyond
the costmap horizon [2]. However, relying on these kinds
of map priors limits the deployment of robots in cases of
rapid environment change (e.g., natural disasters), dynamic
environments, GPS denied environments (where localizing
within the map prior is difficult), and when the ground is
occluded in the overhead image (e.g., tree cover).

Consider the example shown in Figure 1. A robot is tasked
with traveling far off to its right. It sits in a forest, but straight
ahead—beyond its costmap horizon (white circle in B)—is an
easy-to-traverse road. Lacking this road in its map, the robot
will plan to take the orange path where navigating through the
dense forest would ultimately be slower and more expensive
than taking the road. Though the road lies beyond the costmap
horizon, the camera image in Figure 1C reveals a clearing
through the trees to the left that signifies the presence of the
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road and a lower cost path. Unlike ranging sensors, images
capture rich and dense information about distant objects. In
this work, we leverage visual information in images (e.g., the
view of the clearing) to provide additional guidance to the
robot beyond its costmap horizon. We refer to image features
that are useful for navigation that may originate outside of the
robot’s costmap horizon as “far-field” features.

A key challenge in leveraging far-field features is that
images do not provide direct range information, which makes
using these kinds of features difficult for planning. Previous
work addresses this challenge by either projecting the features
onto data from ranging sensors, which inherits the limitations
of the ranging sensors [3]–[5], or by assuming a flat ground
plane [6]–[8], which works poorly with occlusions and suffers
from large projection errors at far distances. Developments in
deep learning have produced richer features enabling monoc-
ular depth estimation, but accuracy decays at larger ranges
(e.g. ±13m at 80m) [9], [10]. Our insight is that these richer
features can be used to coarsely estimate costs at distant ranges
even if the features themselves cannot be localized directly in
the map. This insight allows us to incorporate far-field features
into our costmaps at distances up to 100m in real-world trials
without relying on ranging sensors or a flat ground plane
assumption.

To take a step towards leveraging far-field features inde-
pendently of ranging sensors, we propose FITAM: Far-field
Image-based TraversAbility Mapping. Our approach efficiently
learns from past navigation data in a self-supervised manner
to link distant image features with navigation costs at range.
The main contributions of this work are as follows:

• A method for learning correlations between far-field fea-
tures and cost at range in a self-supervised manner.

• Demonstrated improvement over prior work leveraging
far-field information for large simulated navigation tasks.

• Deployment of FITAM on a physical platform for exper-
iments in a road-forest environment.

II. RELATED WORKS

Estimating the traversability of local terrain from images
has been the focus of many papers [11], with works explor-
ing learning traversability from demonstration [12], inverse
reinforcement learning [13], supervised learning [14], and
self-supervised learning [7], [15], [16] with labels generated
automatically from proprioceptive sensors like an IMU. These
traversability estimates are either learned directly or projected
onto a local map to be used for motion planning.

When maximizing the range of these traversability esti-
mates, a number of works cleverly project image-informed
traversability estimates with stereo [4], [5] or lidar [17]. How-
ever, these approaches inherit the limitations of the ranging
sensors, which limits the range of the traversability estimates,
particularly in the case of stereo. Works that do not rely
on ranging sensors project image-space traversability classi-
fication directly onto a ground plane [6]–[8]. This projection
enables use of more distant far-field features for planning,
but does not generalize well to non-flat or occlusion heavy

outdoor environments, as small changes in orientation or non-
flat terrains result in large projection errors. In our work
we build upon previous image-only long range traversabil-
ity estimation works by removing the flat ground plane as-
sumption, predicting ranges of cost values instead of just
traversable/untraversable, and by predicting costs at distances
greater than 50m.

In [18], super-pixels extend locally traversable patches into
the far-field, but this relies on visual similarity and was
not deployed on a robot. In [19], semantic images are used
to improve navigation through offline reinforcement learning
(RL). In our work, we predict costs into maps instead of
predicting costs of short 4-7 second trajectories. In [20], the
authors reduce segmented images of urban areas into road
networks to support global planning past the local sensor
horizon for UAVs. This leverages far-field features to bias
planning, but does so in a way overfit to the road networks
present in structured, urban environments. In our work, we
target unstructured natural terrains. In [21] the authors use
panoramas to help predict the likelihood of success and cost
of high-level actions which is used to guide long-horizon
planning. It is not obvious how navigation in outdoor natural
environments would be distilled into a limited set of high-level
actions.

III. PROBLEM FORMULATION

The problem of navigation in unknown environments can
be posed as a constrained optimization problem. A robot aims
to travel from a start state xs ∈ S to a goal state xg ∈ S
along a trajectory τ(t) : [t0, tf ] → S, where t0, tf ∈ R+

and S is the state space. The trajectory should minimize
a cost ctraj(τ) : T → R+ where T is the space of all
trajectories. This cost function is often decomposed as a sum
over state costs cstate(x) : S → R+ along the trajectory
ctraj(τ) =

∫ tf
t0

cstate(τ(t))δt. The constrained optimization
problem is stated below.

τ∗ = argmin
τ∈T

ctraj(τ) (1)

τ(t0) = xs

τ(tf ) = xg

In a priori unknown environments, solving this optimization
problem is impossible since the state cost function cstate(x) is
unknown for most states, and is only revealed as the robot
travels through the environment. Limited observability splits
the state space S into two sets: unobserved space Ω ⊂ S ,
for which the cost assignment is uninformed and fixed at a
constant value, and observed space Λ = S − Ω, where an
estimated mapping cstate(x) has been obtained. As the robot
moves to a new state xt, the set of states λ ⊂ S for which
the cost cstate(x) can be estimated is defined by the state
observation function o(xt) : S → 2S . States in λ that were
previously unobserved transition from Ω to Λ, while the cost
estimate cstate(x) is updated for all states in λ.

In this work, we propose a method to expand the coverage
of the observation function õ(xt) ⊃ o(xt) through the use of



far-field features. By providing better observation coverage, we
improve the solutions found to the constrained optimization
problem posed in Equation 1, and thus improve navigation
performance through unknown environments.

IV. METHODS

We propose an approach that learns to predict distant costs
at range from local RGB camera data. This information is
used to supplement costmaps produced by traditional methods
by filling in unobserved costs beyond the costmap horizon.
Our approach enables in-the-field training in a self-supervised
manner from autonomous or teleoperated data collects, reduc-
ing the overhead of operating in new environments.

A. Learning to Predict Cost at Range

Our goal is to predict cost at range. Our planning objective
is minimizing time-to-goal, thus the cost of an area is the time
to traverse it. While monocular images do not directly encode
the distance to objects, they do capture the objects’ bearing.
To leverage this information, we use a polar coordinate dis-
cretization of the state space centered on the robot.

More specifically, we define a discretization of the state
space, or “bin”, to span an angle ∆θb ∈ [0, 2π] while lying
between two radii rj and rj+1 in a polar coordinate system
(see Figure 2). These bins cover the space around the robot
radially with boundaries defined by rb = (r0, . . . , rB+1), rj ∈
R+, rj < rj+1. The number of bins along the radial dimension
is B = dim(rb)− 1. A set of radial bins refers to the B bins
at a given angle as seen in Figure 2. We also discretize the
cost space into a fixed number G of “cost classes”. In our
application we use time per unit distance (sm−1) as cost. Thus,
the cost space classes span the speeds of the robot.

To match the polar discretization, RGB images It ∈
[0, 1]H×W×3 with height H and width W from the robot are
split into K vertical slices I(i)t ∈ [0, 1]H×W ′×3, i ∈ [K] where
each slice of width W ′ pixels has a horizontal field-of-view
(FOV) matching ∆θb, and [K] refers to 0, . . . ,K − 1. Our
objective is to train an ensemble of M models for each bin
j ∈ [B] along the radial direction. Each ensemble of models
takes features f (i)t ∈ RD extracted from an image slice I

(i)
t and

produces a categorical distribution P
(i,j)
t over cost classes1 as

shown in Figure 2.

B. Automatic Far-Field Cost Labeling

Like previous work [22], [23], we employ near-to-far learn-
ing to connect local observations with distant images of
the terrain by labeling robot experience in a self-supervised
manner. Our approach consumes robot navigation experience
to learn to leverage far-field features for navigation. We assume
that the data consists of RGB images It and lidar scans
Lt ∈ R3×P where P is the number of points. Note that the
lidar data are only used at training time and are not used at
test time to produce a cost estimate. We use lidar SLAM [24]
to produce odometry (position and orientation) relative to the
starting state xs ∈ SE(3).

1For this task we found classification generally outperformed regression.

Fig. 2. The structure of the learning problem.

The first step is building a 2D costmap from semantics.
We segment each image with FC-HarDNet [25], and map the
semantic class of each segment to a cost (reasonable traversal
time). We project these cost segments from the images onto
lidar scans to build an accumulated map of local cost estimates
ml : p → R+ which maps an observed position p ∈ R2

to the cost in sm−1 the robot is expected to accrue at that
position. A visualization of the semantic map produced by
this process (before converting semantics to cost) is overlaid
on the environment in both Figure 3 and Figure 6.

Each image It is split into slices I
(i)
t that become the input

to the model. Each image slice I
(i)
t has a horizontal FOV

matching the angular bin width ∆θb. The number of image
slices is set to K = ⌈ fov(It)

∆θb
⌉ where fov(It) is the FOV of

It. To create the supervised labels for each input image slice
I
(i)
t , the respective set of radial bins is overlaid on the local

costmap ml using the current robot’s state xt and the FOV of
the image slice. This is visualized in Figure 3.

To emphasize useful terrain, the lowest cost class that is
present in at least ρbin percent of the cells within the jth radial
bin (j ∈ [B]) is assigned as the label, l(i,j)t ∈ [G] for that bin.
Additionally, a weight w(i,j)

t ∈ [0, 1] equal to the percentage of
the cells that have been observed within that bin is calculated
for use during training to filter ambiguous data. If no class
covers more than ρbin% of the radial bin, no label is assigned
and the image slice is discarded for that bin’s dataset. After
the weights and labels are produced for every image slice,
a dataset Dff,j = {(I(i)t , l

(i,j)
t , w

(i,j)
t )|t ∈ [T ], i ∈ [K]} is

produced for each bin j ∈ [B]. To reduce class imbalance
a final dataset Dbal

ff,j ⊆ Dff,j is calculated by randomly sampling
N ≤ ρclass minc∈[G] count(c) tuples for each class c, where
count(c) is the count of class c in Dff,j and ρclass fixes the
maximum ratio of class counts. This final dataset Dbal

ff,j is used
to train the far-field model for bin j.

C. Model Architecture and Training

The model architecture is shown in Figure 2. Features
f
(i)
t ∈ RD of dimension D are extracted from the input image

slice I(i)t with either a frozen pre-trained network (e.g., DinoV2
[26]) or a jointly trained network. Motivated by increasing
uncertainty on out-of-distribution data [27], an ensemble of
M single, fully-connected layers are used to map this feature
vector f

(i)
t to M categorical distributions over cost classes



Fig. 3. Label and weight generation for one image slice I
(i)
t . The B

radial bins are overlaid on the local costmap ml.

for each bin. These distributions are then averaged, increasing
uncertainty in cases of model disagreement, producing a final
categorical distribution P

(i,j)
t over cost classes for each bin.

To promote diversity in the ensemble member’s outputs,
each network m ∈ [0,M ] of the ensemble is trained on its own
bootstrap sampled dataset Dm

boot,j ⊂ Dbal
ff,j . The fraction of Dbal

ff,j
sampled is fixed at ρboot. For each bootstrapped dataset a class
weight is calculated γc

j =
∑

(I
(i)
t ,l

(i,j)
t ,w

(i,j)
t )∈Dm

boot,j
I(l(i,j)t =

c)/|Dm
boot,j|, where I is the indicator function. A Cross Entropy

(CE) loss weighted by w
(i,j)
t γ

l
(i,j)
t
j is used to emphasize

accurate prediction of radial bins that have good coverage,
and handle class imbalance. A stochastic gradient descent
optimizer is used with an early stopping condition after 10
epochs with no validation improvement. Frozen pre-trained
features f

(i)
t are cached to speed up training.

D. Accumulating Observations into Costmaps

While individual observations and predictions may contain
visual ambiguity or occlusion, fusing these uncertain predic-
tions over time makes FITAM more robust to these uncer-
tainties. During deployment, inference is run on each image
slice I

(i)
t . This produces far-field predictions of distributions

over cost classes P
(i,j)
t for each radial bin. These radial bins

are projected over a Cartesian grid that stores mean cost µ̂cost
and estimate variance σ2

cost per cell. In order to accumulate
observations of varying confidence over time we use a one-
dimensional Kalman filter (similar to [28]) in each Cartesian
cell. To use P

(i,j)
t for this Kalman update, we use the mean

of the costs covered by the most likely cost class as the
observed cost, and we set the observation variance to be
proportional to the entropy of P

(i,j)
t . Fixed process noise Q

is added to all cells each map update step to capture errors in
robot state estimation and bias estimates towards more recent
observations. The Cartesian grid is then used to supplement an
existing costmap. All Cartesian cells with σ2

cost below a fixed
threshold σ2

thresh are used to overwrite unobserved cells in the
existing costmap. The threshold prevents predictions with low
confidence from entering the costmap. The combined map is
then sent to the global planner.

V. SIMULATED EXPERIMENTS

We first use simulation to benchmark FITAM at scale over
long navigation tasks. Additionally, we examine the impact
of the design decisions presented in this paper on the overall
performance of the algorithm. To capture the impact of far-field
predictions on navigation, we report results with respect to nav-
igation without far-field assistance (No FF). This benchmark
discards the far-field observations and does not incorporate
them into the global map, but otherwise operates identically.

A. Simulated Experiment Setup

1) Environment: To capture real environment semantic dis-
tributions, we sample maps from the Chesapeake Bay Program
(CBP) Land Use/Land Cover (LULC) dataset [29]. This dataset
covers the 250,000 km2 that make up the Chesapeake Bay
watershed regional area (ranging from New York to Virginia,
USA) at a meter-per-pixel resolution. Each pixel is assigned a
land cover class (e.g., water, tree canopy). To use these maps
for navigation, each land cover class is mapped to a human-
chosen cost based on safe travel speeds on that terrain, ranging
between 0.25 sm−1 for road to ∞ sm−1 for water.

Obstacles (trees, bushes, rocks, fallen trees, buildings) are
sampled based on the land cover class, and Fury [30] is used
to render 360 deg panoramas from different robot states in
this environment. Each map is 5km × 5km. A sampled map
and part of a panorama image can be seen in Figure 4. It is
assumed that the robot can observe costs within a 25m radius
of its current position that are not occluded by obstacles. These
observations are termed local observations.

Fig. 4. An example 5km×5km semantic map sampled from [29] and
a panorama slice rendered in this environment.

2) FITAM Configuration: Unless otherwise stated, the de-
fault FITAM configuration has three (B = 3) 25m radial bins
spanning 25m to 100m and 32 radial bins of size ∆θb = π

16
radians, ρclass = 1, ρbin = 0.2, ρboot = 0.2, G = 3, M = 15,
σ2

thresh = 0.4, Q = 0.001. The robot’s max speed was 5m s−1.
We found pre-trained feature extractors [26], [31] to degrade
performance on simulated imagery, so we prepend an untrained
ResNet-18 backbone to each model and train it jointly [31].
For planning we employ D*lite to search an 8-connected graph
over the costmap [32].

Training data is generated by sampling a random sequence
of valid poses in free-space in a map. The robot, starting from
the first pose, navigates towards each sequential pose using No
FF. Once a given time limit T = tmax is reached, navigation
stops and the partially observed map and egocentric images



are used to create datasets Dbal
ff,j . Unless otherwise specified,

tmax was ten hours. The dataset for the simulated trials was
created from a map sampled from Baltimore County, MD.

3) Baseline and Additional Benchmarks: As a baseline, we
implement [8], which is most similar to our work. [8] uses
near-to-far self-supervised learning to predict traversability of
distant terrain from images. However, [8] does not learn to
predict the robot’s expected traversal speed in a region of the
map and instead uses geometry as a supervision signal to pre-
dict binary traversability of a distance-normalized image patch.
This predicted traversability is then projected onto a ground
plane to be placed in the robot’s map. To fairly compare [8]
to FITAM, we extend its prediction range from 40m to match
FITAM at 100m. The same trajectory used to create FITAM’s
dataset (see V-A2) was used to create a balanced dataset to
train [8], which achieved similar classification accuracy on a
withheld validation set as mentioned in the paper. No online
adaptation of the model was employed during evaluations.

For simulated results, we additionally report the perfor-
mance of two algorithms that are pseudo-upper bounds: GT
FF, which receives ground truth far-field labels instead of
using a learned model to predict bin speeds and Perfect Vision,
which can perfectly observe the costmap out to 100m instead
of 25m. Roughly, the difference between FITAM and Ground
Truth FF captures the impact of the difficulty of predicting
the labels on navigation, and the difference between Ground
Truth FF and Perfect Vision captures the impact of FITAM
discretization on navigation performance. Neither are true
upper-bounds as better informed local decisions can be sub-
optimal globally.

4) Evaluation: For evaluation, a map was sampled from the
majority of the remaining counties after excluding Baltimore
County in [29] as it was used for training data. One hundred
start locations are sampled per map, each paired with a feasible
sampled goal no less than one kilometer away to produce
18,400 evaluation planning problems.

During evaluation the agent iterates through a sense-plan-
act loop, where it adds its local and FITAM observations to
its costmap, plans a path in this updated costmap, then travels
along this path. The agent travels until encountering a cell not
observed by local observations, or a maximum of 20m along
its path, whichever is shorter, to encourage sufficiently dense
observations. A trial fails and is excluded if an approach does
not reach the goal in 1000 iterations. Our primary metric of
interest is the total cost accumulated while en route to the goal.

B. General Performance
Table I reports performance summaries of FITAM, the

baseline, and the pseudo-upper bound algorithms on the 18,400
planning trials shown in Figure 5. All values are reported with
the mean and 95% confidence intervals using the standard
error of the mean. As shown in the table, FITAM reduces
planning costs in 92.5±0.4% of trials and on average reduces
cost by 19.1 ± 0.3% compared to No FF, outperforming the
baseline which improves 65.2±0.6% of trials with an average
cost reduction of 0.8 ± 0.24%. This supports our hypothesis
that FITAM is able to provide global planning guidance from
images across a range of environments and planning problems.

% Trials Imp ↑ Avg. % Diff ↑ % Failed ↓
Hadsell et al [8] 65.2± 0.6 0.8± 0.24 0.55

FITAM 92.5± 0.4 19.1± 0.3 0.74
GT FF 92.5± 0.4 19.2± 0.3 0.72

Perfect Vision 95.7± 0.3 24.7± 0.3 0.33

TABLE I. Performance compared to No FF across all 18,400 eval-
uation trials. % Trials Imp reports the percentage of trials improved
with the approach (achieved lower cost) compared to No FF. Avg %
Diff reports the average percent difference across all trials between
the approach and No FF. % Failed reports the percentage of trails
that failed. Positive values indicate reduction in cost. No FF failed
0.71% of trials.

Fig. 5. Cost (measured in traversal time from start to goal) of FITAM
(Y-axis) and baseline [8] (X-axis) in 18,400 simulated planning
problems across 184 environments. Each point is a planning trial.
The bias below the line y = x indicates FITAM better learns to
exploit far-field information for motion planning.

C. Ablations

To understand the impact of design decisions made for FI-
TAM, we perturb parts of the architecture described in Section
IV. These components and their alternatives are described
below. For all ablations, the same evaluation configuration
previously described is used, except only 10 planning problems
are sampled from each map. Results are presented in Table II.
All approaches failed in fewer than 1.1% of trials.

1) Dataset Collection Time: To understand the relationship
between the amount of simulated data and performance, we
take the full 10-hour trajectory collected for Section V-B and
train a FITAM model on datasets created from subsets of the
trajectory ranging from 10 minutes to 6 hours. We see in Table
II-1 that FITAM improves navigation even with little data, but
performance improves with more data.

2) Max Prediction Distance: We vary the maximum dis-
tance from the robot the range bins reach. One model is trained
with eleven 25m range bins spanning a total distance from 25m
to 300m. Trials are run while ignoring predictions from bins
beyond the reported max distance (e.g., for a max distance
of 250m, bins 10 and 11 are ignored). As shown in Table
II-2 increasing range improves performance in the simulated
setting, with diminishing returns by 200m.

3) Range Bin Fidelity: Without changing the total distance
the range bins cover (25m to 100m), we vary the number (1,



1) Dataset Collection Time
Minutes 10 min 30 min 60 min 120 min 360 min
% Trials Imp 80.8 ± 1.8 82.7 ± 1.7 88.6 ± 1.5 91.6 ± 1.3 92.3 ± 1.2
Avg % Diff 7.4 ± 1.5 9.0 ± 1.6 15.3 ± 1.1 18.2 ± 1.0 18.9 ± 1.0

2) Max Prediction Distance
Max Dist (m) 100m 150m 200m 250m 300m
% Trials Imp 92.3 ± 1.2 94.1 ± 1.1 94.5 ± 1.0 94.2 ± 1.1 94.0 ± 1.1
Avg % Diff 18.7 ± 1.0 22.8 ± 1.0 24.6 ± 1.1 25.2 ± 1.1 25.4 ± 1.1

3) Range Bin Fidelity
# Rad Bins 1 2 4 8 10
% Trials Imp 87.3 ± 1.5 91.6 ± 1.3 92.7 ± 1.2 93.6 ± 1.1 93.9 ± 1.1
Avg % Diff 15.5 ± 1.0 18.5 ± 1.0 19.3 ± 1.0 20.1 ± 1.0 20.2 ± 1.0

4) Heading Bin Fidelity
# Ang Bins 4 8 16 32 64
% Trials Imp 80.4 ± 1.8 87.1 ± 1.5 92.1 ± 1.2 92.2 ± 1.2 92.5 ± 1.2
Avg % Diff 9.5 ± 1.1 14.1 ± 1.1 18.6 ± 1.0 19.0 ± 1.0 18.5 ± 1.0

5) Range and Heading Bin Fidelity
Bin Conf 1r4h 2r8h 4r16h 8r32h 10r64h
% Trials Imp 79.9 ± 1.8 86.1 ± 1.6 91.7 ± 1.3 93.4 ± 1.1 93.9 ± 1.1
Avg % Diff 6.7 ± 1.5 13.1 ± 1.1 18.9 ± 1.0 20.3 ± 1.0 19.9 ± 1.0

6) Number of Cost Classes
# Classes 2 3 4 5 6
% Trials Imp 45.1 ± 2.3 92.2 ± 1.2 89.6 ± 1.4 89.5 ± 1.4 90.4 ± 1.4
Avg % Diff -1.1 ± 1.2 19.3 ± 1.0 14.8 ± 1.2 15.0 ± 1.1 18.0 ± 1.3

TABLE II. Results of ablation studies on 1840 planning trials. On
these 1840 planning trials Perfect Vision achieved a % Trials Imp
rate of 95.7± 0.9% and an Avg % Diff of 24.5± 1.1% and Ground
Truth FF achieved a % Trials Imp rate of 93.1± 1.2% and an Avg
% Diff of 19.1± 1.0%

2, 4, 8, 10) of range bins. As the number of bins increases
the environment is more finely discretized. As shown in Table
II-3 after a noticeable jump between 1 and 2 range bins,
performance only increases modestly with more radial bins.

4) Heading Bin Fidelity: Similar to Range Bin Fidelity, we
vary the number of angular bins that the 360 deg around the
robot is split into, using 4, 8, 16, 32, and 64 bins. Shown in
Table II-4 the choice of angular discretization has a stronger
impact on navigation performance compared to range binning,
suggesting that a low number of heading bins seriously limits
the usability of the predictions for navigation.

5) Range and Heading Bin Fidelity: Heading and range
binning are varied jointly with the values used in the previous
two fidelity ablations. In Table II-5 bin configurations are
reported as XrYh indicating X radial bins and Y heading bins.
Performance mirrors the heading fidelity ablation in trend, with
a slight edge for higher bin count configurations.

6) Number of Cost Classes: We vary the number of cost
classes the network can produce, increasing the fidelity at
which FITAM can represent costs. All class configurations
divide the space between 0 ms−1 and 5 ms−1 into a different
number of (not necessarily uniform) bins, grouping together
different subsets of the obstacles and terrain types present in
the simulated maps. Results are shown in Table II-6. In this
environment, 2 classes is not rich enough to guide motion
planning effectively, while 3 performs well. Beyond 3 classes
performance varies. This may reflect factors like learning
complexity or how cost classes line up with observed costs.

VI. PHYSICAL EXPERIMENTS

We demonstrate our approach on a Clearpath Robotics
Warthog (shown in Figure 1), equipped with an OS1-64 lidar

Fig. 6. Semantic costmaps ml built from training data collected in
the location shown on the left and (for visualization only) testing data
on the right overlaid on a satellite image of the area.

and FLIR Blackfly RGB forward-facing camera capturing
images of size H = 1080,W = 1440. Data was collected
during midday in the summer by teleoperating the robot for
12 minutes on one part of a road-forest junction as shown
in Figure 6. The environment contained occluding obstacles
like trees, fallen trees, and bushes. This data was used to
train a model as described in Section IV. Image features were
extracted with DinoV2 ViT-B [26]. FITAM was configured
with two cost classes (G = 2, to capture road/forest) spanning
0− 5m s−1, four radial bins (B = 4) spanning 25m to 100m,
an angular bin width of ∆θb =

π
20 rad, ρclass = ∞, ρbin = 0.2,

ρboot = 0.2, M = 15, σ2
thresh = 0.4, and Q = 0.001.

On the physical platform we used the Kinodynamic Ef-
ficiently Adaptive State Lattice (KEASL) to produce global
plans [33]. This planner optimizes the time of a feasible path
while avoiding obstacles and obeying terrain speed limits. In
our case, these terrain speed limits were the costs inferred by
the FITAM model, combined with speed wells around obsta-
cles to promote slower navigation when precision is required.
We compare results against No FF that discards the far-field
predictions but otherwise operates identically. The robot used a
lidar-based obstacle classifier, marking all objects above 0.4m
as obstacles. SLAM was performed by OmniMapper [34] and
local planning was handled by MPPI [35]. FITAM was run on
a computer equipped with an Intel(R) Core(TM) i7-8700 12-
core CPU, 32 gigabytes of RAM, and a Tesla T4 GPU. FITAM
produced predictions at 1Hz. The trained model was deployed
months later with start and goal locations shown in Figure 8.
The environment had gone through significant visual change
as shown in Figure 9. Three trials for each FITAM and the No
FF benchmark were completed. When the platform collided
with an obstacle or otherwise engaged in dangerous behavior,
a teleoperator intervened, and safely completed the maneuver
the robot was attempting.

A. Experimental Results

The GPS trajectory of each trial is shown in the center of
Figure 8. In each of the FITAM trials, the robot picks out the
road in the distance and global planning exploits it, bringing
the robot to the goal more reliably (fewer interventions) and
faster (total autonomy time), as reported in Figure 7 and Table
III. When traveling on the road FITAM periodically detects the



Fig. 7. Visual of robot status during trials. Autonomy (green) shows
when the robot was under its own control, E-stop (red) when it
was emergency stopped, and Manual (blue) when it was teleoperated
during an intervention. FITAM significantly reduced the number of
interventions during navigation.

Fig. 8. Map evolution across a trial for FITAM and No FF. The
center image shows the GPS position histories for all trials. The top
(FITAM) and bottom (No FF) images show the global maps and
global plans at the start (left), intermediate time (center) and end
(right) of a trial. Black and grey regions display obstacles (trees and
people operating the robot). In the FITAM maps shades of cyan show
the accumulated far-field low cost predictions. The blue rectangle is
the robot’s position as it navigates between the start (green) and goal
(red). As can be seen in the top left image, FITAM identifies the low
cost road and clearing ranging 25m to 62m.

road in the furthest bin, adding it to the map up to 100m away.
The No FF trials did not exploit the road and navigated directly
towards the goal, bringing the robot through the rougher,
forested terrain where frequent interventions were required to
prevent collisions with trees and free the robot when it became
stuck on logs or between trees.

B. Inference Performance Across Seasons

As highlighted by the far-field map accuracy in Figure 8,
FITAM generalized well across the visual change shown in
Figure 9 from summer (training) to fall (deployment). We

Total Time (s) Autonomy Time (s) Interventions
No FF 615 (585, 600, 660) 464 (401, 483, 507) 6.3 (7, 7, 5)
FITAM 329 (318, 315, 354) 320 (318, 315, 329) 0.3 (0, 0, 1)

TABLE III. Performance metrics for real-world deployment: Values
are displayed as Avg. (Trial 1, Trial 2, Trial 3). FITAM reduced the
average autonomous time and total time (including interven-
tions) to reach the goal by 31% and 46% respectively. One
intervention occurred during FITAM trials compared to 19
during the No FF runs.

Fig. 9. FITAM was trained on data collected in summer and deployed
in the fall. We also test classification performance across seasons
(summer, fall, winter) as shown in Table IV.

observed similar map quality while running the same FITAM
model on data collected in snowy winter conditions. To inves-
tigate seasonal generalization and the role pre-trained features
play, we create five datasets: train/val from the training route
in the summer shown in Figure 6 and test summer, test fall,
and test winter from the deployment route in the respective
seasons. On these datasets we train and evaluate FITAM
models with three types of image features: DinoV2 ViT-B
features (86.6M params) [26], ResNet-18 features pre-trained
on ImageNet (11.2M params) [31], and ResNet-18 with no
pre-trained weights trained jointly (No Pre). Fifteen models
were trained with these features on the train dataset and class-
weighted ROC AUC is reported on test datasets in Table IV.
We use the same FITAM configuration as Section VI and use
the datasets for the bin spanning 43m to 64m. We observe that
the models using DinoV2 features generalize better to fall and
winter datasets for predicting far-field costs.

C. Use of Ensembles

Ensembles were used in FITAM to reduce prediction con-
fidence on out-of-distribution (OOD) data. To evaluate the
ability of ensembles to reduce OOD confidence we trained
an ensemble of M = 15 models with DINO features on the
previous train dataset. We compare the ensemble confidence
across all images in an ood dataset collected in an urban setting
with the confidence of a single model (M = 1). As most of the
images in the ood dataset contain situations not encountered in
training (e.g., inside buildings, water), lower model confidence
is desirable. We observed the ensemble reduced the average
model confidence across the ood dataset from 88% to 80%
on the binary classification task. The value M was chosen
for the experiments above as most of the reduction in OOD
uncertainty as a function of M was realized by M = 15.

val summer test fall test winter test
DinoV2 1.0± .000 .94± .001 .63± .010 .74± .004
ResNet18 .99± .000 .96± .001 .58± .001 .69± .004
No Pre .98± .002 .97± .001 .60± .020 .67± .036

TABLE IV. Class-weighted ROC AUC for cost classification, com-
paring different image feature sets.



VII. CONCLUSIONS

In this work, we propose FITAM which learns to predict
distant terrain costs using only images. FITAM trains on self-
labeled data and integrates smoothly with existing navigation
architectures that use costmaps. We demonstrate FITAM’s
ability to outperform prior work at scale in a simulated setting,
and inspect components of our algorithm through ablations.
Finally, we deploy FITAM on a Clearpath Robotics Warthog
and demonstrate its ability to detect distant and actionable low-
cost regions which improved navigation performance against
a baseline, even with significant visual change from training
data. Possible directions for future work include methods
that learn priors over environment structure to better leverage
limited far-field information, or investigations into FITAM’s
robustness to noisy self-supervised labels.
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N. Anousheh, F. Silva, G. Fox, and F. Contributors, “Fury: advanced
scientific visualization,” Journal of Open Source Software, vol. 6, 2021.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[32] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth National Confer-
ence on Artificial Intelligence, 2002, pp. 476–483.

[33] E. R. Damm, J. M. Gregory, E. S. Lancaster, F. A. Sanchez, D. M.
Sahu, and T. M. Howard, “Terrain-aware kinodynamic planning with
efficiently adaptive state lattices for mobile robot navigation in off-
road environments,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 9918–9925.

[34] A. J. B. Trevor, J. G. Rogers, and H. I. Christensen, “Omnimapper: A
modular multimodal mapping framework,” in International Conference
on Robotics and Automation (ICRA), 2014, pp. 1983–1990.

[35] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 1714–1721.


	INTRODUCTION
	Related Works
	PROBLEM FORMULATION
	METHODS
	Learning to Predict Cost at Range
	Automatic Far-Field Cost Labeling
	Model Architecture and Training
	Accumulating Observations into Costmaps

	Simulated Experiments
	Simulated Experiment Setup
	Environment
	FITAM Configuration
	Baseline and Additional Benchmarks
	Evaluation

	General Performance
	Ablations
	Dataset Collection Time
	Max Prediction Distance
	Range Bin Fidelity
	Heading Bin Fidelity
	Range and Heading Bin Fidelity
	Number of Cost Classes


	Physical Experiments
	Experimental Results
	Inference Performance Across Seasons
	Use of Ensembles

	Conclusions
	References

