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Abstract. Teams of robots deployed in large outdoor environments
tasked with complex missions, such as surveying or search and res-
cue, need to collaborate in order to efficiently execute the missions. We
present a hierarchical planning system capable of minimizing the time it
takes for team members to reach their goals, using route graphs derived
from prior overhead views that contain metric-semantic information. The
team is tasked via natural language, and we show that our collaborative
planner outperforms a non-collaborative baseline across 22 field trials.
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1 Introduction

Teams of robots can be used to execute complex missions, such as search and
rescue, surveying, and reconnaissance. To succeed in such time-critical missions,
it is important that the mission goal is expressible in natural language and
that the team collaborates efficiently to minimize the overall execution time, or
team makespan. Prior information, such as satellite imagery, can be leveraged
to estimate terrain and identify areas where the robots may be able to traverse.
However, the traversability of some regions cannot be observed from overhead
images and is, therefore, uncertain. Consider, for example, the scenario shown
in Fig. 1 where a robot team is tasked with navigating through a large outdoor
environment. The satellite image shows that there is a bridge over the river
where an agent could cross. However, the bridge may be blocked, as seen from the
ground observation. Although the bridge’s traversability is most relevant to agent
A, it is more efficient for agent B to inspect it and relay that information to the
team, rather than having agent A travel to the bridge and potentially backtrack
to its starting location. In this work, we aim to address both the theoretical and
practical challenges of efficient multi-agent decision-making under uncertainty,
while providing an interface to define the mission in natural language.
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Fig. 1: Agent A needs to cross the bridge, but the traversability is unobservable from
an overhead image. Agent B can provide the observation to reduce team makespan.

To generate effective multi-agent plans in the face of real-world environmen-
tal uncertainty, we must answer three critical questions: (1) what is useful to
explore given the team objectives, (2) when does the team need the explored
information to improve team performance (i.e., mission completion time), and
(3) who should explore. Answering these questions requires solving a Partially
Observable Markov Decision Process (POMDP) with a large action and obser-
vation space, long time horizon, and delayed rewards, which is unlikely to be
computationally tractable in real-world environments. To improve tractability,
we design stochastic graphs that sparsely represent the planning problem, and
we ground the mission goals in the graphs via natural language instructions. We
also develop efficient algorithms to generate plans that minimize team makespan.

However, our stochastic route graph abstracts away many properties that
are needed to represent real-world plan execution, including unmodeled uncer-
tainty, timing delays, and robot navigation failures. To enable the team of agents
to execute the abstract plans in the real world, we design a hierarchical plan-
ning system that addresses a number of these practical challenges. Our bi-level
planning approach uses a higher-level abstract planner to produce collaborative,
multi-agent plans and a lower-level agent planner that generates trajectories to
carry out the actions from the abstract planner.

We evaluate the ability of our system to ground natural language to planning
goals across 100 language instructions with varying degrees of linguistic difficulty.
Furthermore, we showcase a real-world deployment spanning 22 field trials of our
collaborative, multi-agent planning approach and show it achieves statistically
significant faster mission completion times, even while accounting for an increase
in planning time.

2 Approach

Consider a team (A) of N agents with heterogeneous capabilities, where each
agent is tasked with navigating to a 2D metric goal (z,y). A user can provide a
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Fig. 2: System diagram of goal generation, graph generation, and planning.

metric goal or semantic goal through a natural language instruction I. During
execution, the team’s objective is to execute a plan that achieves the mission
goals while minimizing overall team makespan. As agents progress towards their
navigation goals, they communicate observations about the environment with
one another via a centralized base station. Our architecture (Fig. 2) consists of a
natural language goal generator, a probabilistic graph generator, and a hierarchi-
cal collaborative planner, which enables centralized planning under uncertainty.

2.1 Planning Model Construction

We first describe a method of constructing a planning model, given a prior
map of the environment and the natural language instruction I. We assume
that I encodes the goals of the mission and that the prior map contains coarse
information about semantic regions in the environment.

Constructing Stochastic Route Graphs: To enable long-horizon rea-
soning about traversability uncertainty and to leverage planners [1] that produce
uncertainty-aware, multi-agent navigation policies, we represent the environ-
ment as a stochastic graph, where each edge represents a possible path through
the environment, annotated with the probabilities that the paths are actually
traversable by the different robots in the team. The graph is constructed using
the approach in [2] from an overhead image that is decomposed into regions with
similar traversability properties (e.g., forests, fields, and roads). The regions that
are known to be traversable, such as roads, make up known freespace.

Given a decomposition of the overhead map into semantic regions, we con-
struct a graph G whose vertices v € V are associated with metric locations (z, y)
and whose edges e € E represent paths between those locations. Each edge is
assigned a cost ¢ and a traversability probability 7 based on the semantic class
of the region it intersects. We assume that the ground truth traversability of
an edge is static and can only be observed by an agent who has navigated to a
vertex adjacent to that edge. To construct a G that sparsely represents quality
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paths in the environment, we must reason about the environmental uncertainty
when choosing which edges to include. We begin by constructing a graph that
lies entirely in known freespace and then iteratively augment G by adding prob-
abilistic “shortcut” edges that are likely to improve expected plan costs. The
resulting G is given as input to the planner described in Section 2.2.

Translating Natural Language Instructions to Metric Goals: To in-
fer the goals in the graph from language, we define a metric-semantic world model
W consisting of annotated landmarks with which a language model (LM(+)) im-
plicitly maps phrases £ from the instruction I to metric waypoints. Additionally,
we assume access to agent ids, r = [ry : VA € A, that are used to associate indi-
vidual goals with specific agents in a team. Given the world model (W), instruc-
tion (I), and agent ids (1), the language model produces a paired list (g) of agent
ids and metric goals: LM(W,, I, r) — [(ro0, (Z0,¥0)),---, (rn, (N, yN))] = ¢.

In practice, we prompt a pre-trained large language model (LLM) [3], [4]
to produce g, populating the context with examples, the world model Ws, the
agent identifiers r, and the instruction I. These goal pairs are then passed to our
collaborative planner described in Section 2.2, which assigns each of the goals to
the closest v on G.

2.2 Hierarchical Collaborative Planning

Given the goals g grounded from natural language and the navigation graph
G, the planner must produce a plan for each agent such that the overall team
makespan is minimized. During online execution, it may be advantageous for
agents to sense and share edge traversability information with teammates. How-
ever, determining which edges are useful to sense, when the team needs the
sensed information, and who should sense is challenging.

Collaborative Multi-agent Planning Under Uncertainty: In [1], we
formulate the collaborative planning under uncertainty problem as a POMDP
and design multi-agent macro-actions and a value function approximation-based
macro-action pruning strategy to increase problem tractability. Reasoning over
macro-actions, which are sequences of primitive actions, instead of the primi-
tive actions themselves, improves tractability by reducing planning depth. We
consider three macro-actions that capture intuitively useful agent behaviors in
a single planning step: (1) navigating via one or more known traversable edges
to the goal, (2) navigating to an unknown edge to sense its traversability, and
(3) waiting in place for information to be sensed by a teammate.

While reasoning over macro-actions reduces the depth of collaborative multi-
agent planning, we still need to consider a large number of macro-actions at each
planning step. Many macro-actions (e.g, those that sense edges that are not on
low-cost paths to the goal) are unlikely to improve team planning performance.
To quickly prune macro-actions that are unlikely to produce high-quality collab-
orative plans from the plan space, we use macro-action-based value functions.
For additional details about the approach, please refer to [1].

Real-World Hierarchical Planning System: We demonstrate in [1] that
we can reduce the makespan of the team plan in simulation, but our models
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Fig. 3: Hierarchical Multi-Agent Planner

abstract away properties critical to real-world plan execution, including unmod-
eled uncertainty, timing delays, and robot failures. For real-world execution of
these abstract plans, we design a hierarchical planning system, shown in Fig. 3,
that reintroduces real-world constraints.

The planner described in the previous section runs at a centralized base
station and coordinates communication between the N agents during online ex-
ecution. At each planning step, the centralized planner assigns a macro-action
to each agent, which is executed using the agent’s onboard bilevel planner, con-
sisting of a higher-level macro-action planner and a lower-level primitive-action
planner. The higher-level planner sequences primitive actions, monitors their
outcomes, and has some ability to adjust primitive action goals based on the
results. At the lower level, the agent plans and executes trajectories to navigate
along an edge, sense the traversability of an edge, or wait in place to receive
sensed information. Execution in the real world relies on an autonomy stack that
includes GPS-based state estimation, GPS-enabled local mapping, a VLM-based
observation function, and a controller capable of executing motor commands.

To navigate along a graph edge, the agent starts at the GPS coordinate that
corresponds to its current vertex in the graph. Its navigation goal is set to the
GPS coordinate of the target vertex, with some positional tolerance. We use
EASL [5] to generate waypoints to the goal and then use MPPI [6] to generate
motor commands to follow the EASL trajectory. The agent leverages its local
occupancy map to avoid obstacles. We use GPT-4o0 [3] to sense the traversability
of an edge, given an image taken from the agent’s front-facing camera and a
prompt that asks if the path is navigable. This VLM-based observation function
is more effective than one that relies solely on the geometry of the environment,
as it accounts for additional semantic cues that may indicate untraversability
(e.g., rocks or tree roots). If it is beneficial for an agent to wait for sensed
information, it pauses until the centralized planner provides that information.

While this approach improves local navigation, imperfect planning abstrac-
tions can still lead to failures across different levels of the planning hierarchy.
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To prevent primitive waypoint-based navigation failures, the higher-level macro-
action planner re-attempts four similar (augmented by a 0.5m in the x or y
direction) primitive navigation actions upon failure, rather than directly mark-
ing the macro-action as failed and reporting the failure to the centralized base
planner. To coordinate agents executing variable-duration macro-actions, such as
traversing edges with different weights, we implement an interrupt-based strat-
egy. When an agent completes a macro-action, it sends the result (success or
failure, current state, and observations) to the centralized planner. The planner
then issues interrupts to all other agents, prompting them to safely terminate
their current macro-action. Once all agents have safely terminated, the central-
ized planner replans and sends new macro-actions.

3 Experiments

In this section, we describe the experiments to evaluate the proposed hierarchical
planning system. We demonstrate the ability to use the algorithms presented
in [1] and [2] to execute complex, large-scale, multi-agent missions in the real
world. We provide results for language grounding experiments and three real-
world planning scenarios at different testing sites, Magazine Beach (Fig. 4),
Cambridge, MA (MB-1 and MB-2, 2-agent), and Camp Buckner (Fig. 5, West
Point, NY (CB-1, 3-agent).

3.1 Heterogeneous Robot Team

We demonstrate our approach using a heterogeneous team of robots containing
a Clearpath Jackal, a Clearpath Husky, and a Boston Dynamics Spot (added for
CB-1). Of the three robots, the Spot is the fastest and can navigate over rough
and steep terrain. The Jackal is the faster of the two wheeled robots, but can
only navigate on flat surfaces, like paved roads. The Husky is the slowest of the
three agents, and can reliably navigate on paved roads and some rough terrain.
Each robot is equipped with an Oak-D or Intel RealSense RGBD camera and a
Velodyne or Ouster lidar for mapping. Localization is performed using a combi-
nation of LIDAR SLAM and GPS. The robots communicate with the centralized
base station, which runs the centralized multi-agent planner described in Section
2.2, via a network of Silvus mesh radios.

3.2 Collaborative Planner vs. Noncollaborative Baseline

In this section, we describe the three different scenarios, MB-1, MB-2, and CB-3,
and discuss the performance of our collaborative multi-agent planner in compar-
ison to a noncollaborative baseline. In the noncollaborative setting, the agents
are still able to communicate sensed information with each other, but no agent
will actively divert from its own optimal path to collect information for another
agent. Agents only passively sense the uncertain edges along their path to the
goal to maximize the chance that useful information is shared among the team.
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Fig.4: MB 2-agent planning scenario with goals (stars) and start points (circles).

In the collaborative setting, agents must actively sense uncertain edges if it is
deemed beneficial for the team.

MB-1 and MB-2: For the two scenarios at MB, we deploy a 2-agent team
consisting of the Jackal and the Husky. In MB-1, the two robots start in the same
region, as shown in Fig. 4, and the Husky is tasked with navigating towards the
upper left corner of the park. The most direct route from the Husky’s start to its
goal goes through a forested region that may or may not be traversable. Since
the Jackal moves faster than the Husky, it is beneficial for the Jackal to sense
the edge through the forested region rather than the Husky. In MB-2, the edge
through the forest, which is valuable to sense, remains the same, but the Husky
and Jackal start on opposite sides of the forest. This scenario is interesting,
because it tests the ability of our planner to model and use global information
in situations where the robots may not have line-of-sight.

CB-1: We expand the use of global information in CB-1 and extend the
scenario to include 3 agents: the Jackal, the Husky, and the Spot. All of the
robots start at different non-line-of-sight locations, as shown in Fig. 5, and the
slowest agent, the Husky, is tasked with traversing over 325 meters to its goal
on the left. In this scenario, the satellite image shows a forested region and a
bridge that may or may not be traversable. Shortcuts through either of these
regions would enable the Husky to make progress more quickly towards its goal.
However, sensing those edges is much more costly for the Husky than for the
Spot or Jackal, since it is the slowest agent.

Results: Across all scenarios, we see that the faster robots divert from their
own paths to sense information for the Husky in the collaborative setting. In
the noncollaborative setting, all agents proceed to their individual goals, and all
edges that are valuable for the Husky to sense (e.g., the forest edge in MB-1 and
MB-2 and the bridge edge in CB-1) are sensed by the Husky itself. In CB-1, both
of the faster agents, the Jackal and the Spot, divert from their optimal paths
to collect information for the Husky. Since the Spot starts near the bridge, it
senses that the bridge is untraversable before navigating to sense the forest edge
closest to it. Meanwhile, the Jackal travels to sense the farther forest edge.
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Fig. 5: WP 3-agent planning scenario with goals (stars) and start points (circles).

We present a summary of the quantitative results from our 22 field trials in
Table 1. In all cases, the execution time is reduced when the agents collaborate to
reach their respective goals. For MB-1 and MB-2, our results demonstrate that
our collaborative planner reduced team execution times by 13.3% and 24.6%
as compared to the non-collaborative baseline, respectively. In the 3-agent case
(CB-1), our execution time is reduced by 16.41%. The language command T
issued for this scenario was “Husky, go to the cafeteria. Jackal, go to the parking
lot. Enyo, go to the manhole”, where Enyo was the name of the Spot. We also
examine the total trial times (execution + planning) in relation to the planning
times. In MB-1, the collaborative planner generated plans 7.8x more slowly than
the non-collaborative planner, and resulted in a 0.5% increase in total trial times
as compared to the baseline. However, in more complicated scenarios, MB-2
and CB-1, where the robots do not start within line of sight of each other, the
collaborative planner outperforms in total trial times with a 3.5% decrease in
total trial times, and a 12.2% decrease in total trial times as compared to the
non-collaborative baseline.

Non-Collaborative Collaborative

Scenario Trial Times | Exec. ‘Plan. Trial Times | Exec. Plan.

Times Times Times Times
WP (West Point 3-agent), 3 trials
Average (s) 640.18 635.68 4.5 561.58 531.35 30.23
STD (s) 32.77 32.84 0.15 6.0 6.68 0.68
SEM (s) 23.17 23.22 0.1 4.24 4.72 0.48
MB-1 (Magazine Beach, 2-agent Scenario 1), 5 trials
Average (s) 261.9 256.74 5.16 263.18 222.51 40.66
STD (s) 20.14 20.16 0.09 12.23 11.34 6.24
SEM (s) 10.07 10.08 0.04 6.12 5.67 3.12
MB-2 (Magazine Beach 2-agent, Scenario 2), 3 trials
Average (s) 308.7 303.1 5.6 298.0 228.4 69.6
STD (s) 6.01 5.04 0.14 5.25 179 0.93
SEM (s) 13 12 0.1 371 3.38 0.66

Table 1: Planning results for real-world scenarios. Note: trial counts are for each
of the non-collaborative and collaborative scenarios.
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1 Robot 2 Robots 3 Robots Overall Avg.
Model DL SR Syn.|DL SR Syn.|DL SR Syn. U || Acc. | Time (s)
CL-3.5-Sonnet [7] | 100 50 100| 90 50 100| 70 50 100 70 78 2.76
CL-3.5-Haiku [7] 100 70 100| 90 50 100| 70 50 90 80 80 2.99
CL-3.7-Sonnet [7] | 100 8 100| 90 70 100| 70 70 100 80 86 4.67
gpt-4o0-mini [3] 100 10 100 | 90 0 80| 70 0 80 60 59 4.28
gpt-4o [3] 100 50 100 90 50 100| 70 10 100 60 73 1.41
Models run locally with 4bit quantization on a RTX 4090
llama3.2-3B [8] 70 0 60| 60 0 20| 30 0 10 10 26 0.19
llama3.1-8B [8] 100 10 100| 80 20 60| 70 10 50 40 54 2.15
Gemma3-1B [4] 0 0 0 0 0 0 0 0 0 0 0 0.18
Gemma3-4B [4] 100 10 100 | 80 0 80| 60 0 60 60 55 0.35
Gemma3-27B [4] 100 20 100 90 10 100| 70 20 100 70 68 1.40
Qwen3-0.6B [9] 0 0 0| 10 0 0 0 0 0 0 1 0.15
Qwen3-32B [9] 100 40 100 90 30 100| 70 10 90 70 70 25.84

Table 2: Language Grounding Results. Values are in percentages, each category
had 10 instructions.

3.3 Language Grounding

In addition to the language commands evaluated in the field, we conduct an
offline study on grounding language to metric-semantic goals. Specifically, we
generate a set of 100 language commands categorized by linguistic feature. Di-
rect landmark instructions (DL) specify goals with direct reference to a spe-
cific semantic location in the map; we also evaluate instructions with synonyms
(Syn.). Spatial relation instructions (SR) specify goals via spatial language, such
as “go between”. Under-specified instructions (U) do not include a specific agent
assignment, requiring the model to assign the goals to agents. We group the in-
structions by the number of agents (\) in the team. Table 2 shows a summary of
the language results. The timing results for Anthropic Claude) (CL) and OpenAl
(GPT) models refer to the API response time. All other models were evaluated
locally using 4-bit quantized weights on an NVIDIA RTX 4090 via the Ollama®
and 1lama.cpp? libraries.

The CL family of models is the most successful at the grounding task, with
CL 3.7 achieving an 86% success rate. Across all models, SR instructions were
challenging, especially when the models were tasked with creating goals for the
full team. The Gemma3 family of models shows promise for grounding instruc-
tions locally on a robot platform with 68% success on the 27B parameter model.

4 Related Work

Multi-Agent Collaborative Planning: We model the problem of multi-
agent navigation in unknown environments as a variant of the Canadian Trav-
eller’s Problem (CTP), which has been used as a tool to study the complexity
of navigation on graphs with stochastic edges [10]-[13]. Other approaches have
been developed for graph-based, risk-aware single-agent navigation under edge

"https://github.com/ollama,/ollama,
*https://github.com/ggml-org/llama.cpp
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cost uncertainty, including stochastic graph generation from overhead imagery
[14], and online planning with uncertain edge costs [15], [16]. Most recently, we
developed an approach for generating high-quality multi-agent policies for CTPs
that minimize team makespans for heterogeneous robot teams [1].

Constructing CTP Graphs: In this work, we proposed using a weighted,
stochastic graph (i.e., a CTP graph) to represent the costs and traversability
probabilities of different paths in the environment. Many other approaches have
also used CTP graphs [17]-[19] to enable high-quality and robust planning un-
der uncertainty. However, many of these approaches either use hand-designed
graphs, randomly generated graphs, or graphs built from existing maps of the
environment. Hand-designing these graphs is tedious, so we employ a method
of automatically generating high-quality CTP graphs from prior information in
this work. The approach that is most similar to ours is [20], which constructs
Partial Covering Canadian Traveller Problem graphs from satellite images and
also prunes stochastic edges that will not improve expected plan costs.

Language Grounding: There is a rich history of using natural language to
command robots [21]. One formulation treats the problem as a semantic parsing
or translation problem in which a language model maps an instruction to a
structured symbolic representation that is congruent with an existing planner,
such as lambda calculus [22], [23], temporal logic [24], planning domain definition
language [25], or motion planning constraints [26], among others. More recently,
an alternative approach has been to use LLMs or VLMs to directly map to action
sequences [27], [28]. Our approach aligns more closely with the former in that we
rely on an existing planner; however, we map to continuous coordinates as goals
rather than an existing symbolic structure, perhaps most similarly to work that
maps to non-symbolic motion planning constraints [29].

5 Conclusion

We present a hierarchical, uncertainty-aware multi-agent collaborative planning
system that enables heterogeneous teams of robots to execute complex missions
in large, outdoor environments. The system combines route graphs generated
from overhead imagery, a natural language interface that grounds instructions
to metric-semantic goals, and a collaborative planner that reasons over macro-
actions to generate plans that minimize team makespan. A bilevel execution
architecture allows abstract plans to be carried out in the real world, addressing
challenges such as timing delays, unmodeled uncertainty, and robot navigation
failures. We show that we can achieve an 86% grounding to goal success rate
spanning 100 language instructions. Across 22 real-world trials, our approach
consistently reduced execution time in comparison to a non-collaborative base-
line, even when accounting for increased planning time. In future work, we would
like to further improve our ability to handle mismatches between our planning
abstractions and the real world. Updating our planning abstractions online in
response to local sensor data, for example, would result in more efficient task
execution, more efficient planning, and fewer catastrophic failures.
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